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1. Introduction

The intersection theory for the moduli space of curves with marked points has been studied

by various methods with the aim of proving Witten’s conjectures [1] on the relationship

between the structure of this space with KdV flows. In particular this has led to a solution

through Kontsevich’s Airy matrix model [2]. The generalizations of this theory have been

also considered by Witten, who conjectured that the intersection numbers of the moduli

space with top Chern class is described by the pth-KdV equation [3].

This generalization is related to the twisted N=2 supersymmetric conformal field the-

ory, and particulary it has a close relation to the level k = p − 2 WZW model [4].

In previous articles [5, 6], we have found that a random matrix theory with an external

source gives an alternative method for obtaining the intersection theory of the moduli space

of Riemann surfaces with a p-spin structure.

We have discussed it through an N-k duality in the expectation values of the product

of k characteristic polynomials of N ×N matrices . After tuning appropriately the external

source to a critical value, we obtain the intersection numbers of the moduli space from the

Fourier transforms of the correlation functions. We had studied in the past random matrix

theory with an external source as a way to tune higher edge singularities, including gap

closing cases [7, 8]. Through this duality, plus tuning of the source, we show here that one

obtains the generalized Kontsevich models.

In a previous article, we have computed the intersection numbers with one marked

point for the generalized Kontsevich model with p-spin curves by the replica method applied

to a Gaussian random matrix theory. We have also found, by an alternative method, that

the Fourier transform of the one point correlation function U(s) provides those intersection
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numbers and we have found an explicit agreement of the two approaches in the case of one-

marked point and arbitrary genus when p = 3 [6]. This was checking that a Gaussian

random matrix model with an external source is a dual (mirror) model to the generalized

Kontsevich models of p-spin structures with one marked point. (We will also show below

that it is true for p > 3.)

For p=2, which is Kontsevich original Airy matrix model, the intersection numbers

have been computed explicitly, for a few marked points, from a Fourier transform of the

correlation functions at the edge of the spectrum of the density of eigenvalues, in a random

matrix model by Okounkov [9, 10] and in our previous article [5]. Here we extend the

analysis to the case of p 6= 2, again from the edge singularities of the correlation functions

in a matrix theory.

The intersection numbers are characterized by the genus g and marked points n with

a ”spin-structure” labelled by a non-negative integer j, (j = 0, 1, . . . , p − 1). Higher Airy

matrix models for curves with a p-spin structure are given by [2]

Z =
1

Z0

∫

dBexp

[

1

p + 1
tr(Bp+1 − Λp+1) − tr(B − Λ)Λp

]

(1.1)

where

Z0 =

∫

dBexp





p−1
∑

j=0

tr
1

2
ΛjBΛp−j−1B



 (1.2)

The free energy, the logarithm of the partition function Z, is the generating function

for the intersection numbers <
∏

τm,j >,

F =
∑

dm,j

<
∏

m,j

τ
dm,j

m,j >
∏

m,j

t
dm,j

m,j

dm,j !
(1.3)

where

tm,j = (−p)
j−p−m(p+2)

2(p+1)

m−1
∏

l=0

(lp + j + 1)tr
1

Λmp+j+1
(1.4)

According to Witten [3] the intersection numbers is given by the top Chern class cT and

by the first Chern class c1 as

< τm1,j1 · · · τmn,jn >=
1

pg

∫

M̄g,n

cT (j1, · · · , jn)

n
∏

k=1

c1(Lk)
mk (1.5)

with the condition which relates, for given p, the indices to the genus g of the surface,

(p + 1)(2g − 2 + n) =
n

∑

i=1

(pmi + ji + 1). (1.6)

For more precise definitions and recent studies of the intersection numbers, we refer to

the literatures [18 – 22].

The higher Airy matrix model of (1.1) is known to corresponds to a (p − 1) matrix

model, which is conjectured to satisfy pth KdV equation. The Virasoro equations for this

case are given in [23]. They have been used for computing recursively these intersection

numbers; here these numbers are given directly through a generating function.
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2. One point correlation function

In a previous article [5] we have used explicit integral representations for the correlation

functions [12 – 14] for a Gaussian unitary ensemble (GUE) of random matrices M in the

presence of an external matrix source.

The probabililty distribution for N × N Hermitian matrices is

PA(M) =
1

ZA
e−

N
2

trM2−NtrMA (2.1)

We denote the eigenvalues of the external source matrix by aα.

The Fourier transform of the one point correlation function, the density of state ρ(λ),

is

U(s) =

∫

dλ

2π
eiλs < trδ(λ − M) > (2.2)

where the average < · · · > is taken with respect to the probability distribution PA(M). An

exact integral representation is known [12 – 14] for arbitrary aj:

U(s) =
1

Ns
e

N
2

s2

∮

du

2πi

N
∏

j=1

(

1 − s

aj − u

)

eNsu (2.3)

In the following we shall consider special cases in which the degeneracies of the distinct

eigenvalues are proportional to N . In particular we consider (p − 1) different eigenvalues

aα, (α = 1, . . . , p−1), each aα being N
p−1 times degenerate. Then above expression reduces

then to

U(s) =
1

Ns
e

N
2

s2

∮

du

2πi

p−1
∏

α=1

(

1 − s

aα − u

)
N

p−1

eNsu. (2.4)

We now consider the large-N limit, in a regime in which s and u are of order N−(p+1).

The distinct eigenvalues aα are taken to be all of order one. Let us expand the integrand

U(s) =
1

Ns
e

N
2

s2

∮

du

2πi
exp

[

− N

p − 1

p−1
∑

α=1

∞
∑

m=0

(

(u + s)m

mam
α

− um

mam
α

)

+ Nsu

]

(2.5)

In the large-N limit the summation over m may be truncated at m ≤ p + 1 since higher

orders vanish in that limit. We now specify the (p− 1) distinct eigenvalues of the external

source by the (p − 1) conditions:

p−1
∑

α

1

a2
α

= p − 1,

p−1
∑

α=1

1

am
α

= 0, (m = 3, 4, . . . , p)

p−1
∑

α=1

1

ap+1
α

6= 0. (2.6)

With these conditions, in the regime of interest, one has

U(s) =
1

Ns
exp

[

− N

p − 1
s

(

p−1
∑

α=1

1

aα

)]

∫

du

2πi
expC[up+1 − (u + s)p+1] (2.7)
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with

C =
N

p2 − 1

p−1
∑

α=1

1

ap+1
α

. (2.8)

The integration over u takes a more symmetric form after the shift u → u − 1
2s:

U(s) =
1

Ns
e
− Ns

p−1

Pp−1
α=1

1
aα

∫

du

2πi
e−Cf(u) (2.9)

with

f(u) =

(

u +
1

2
s

)p+1

−
(

u − 1

2
s

)p+1

=

p+1
∑

m=0

(

p + 1

m

)

sm

2m
(1 − (−1)m)up+1−m (2.10)

where the interval of the integration of u is (−i∞,+i∞).

3. Edge singularities

In the large N limit, the density of state ρ(λ) has a finite support, and thus develops

singularities at the edge of the distribution. We consider now the nature of this singularity

for the p-spin case.

In the large N-limit the Green function G(z) = 1
N 〈tr 1

z−M〉 is given by a simple equation

due to Pastur [16] (see also [17])

G(z) =
1

N

N
∑

α=1

1

z − aα − G(z)
. (3.1)

For a source which consists of (p−1) distinct eigenvalues, each of them degenerate N/(p−1)

times, this reads

G(z) =
1

p − 1

p−1
∑

α=1

1

z − aα − G(z)
(3.2)

If we expand this resolvent in powers of 1
aα

, and use the conditions (2.6), we find

G = − 1

p − 1

(

p−1
∑

α=1

1

aα

)

− 1

p − 1
(z − G(z))

(

p−1
∑

α=1

1

a2
α

)

− 1

p − 1

(

p−1
∑

α=1

1

ap+1
α

)

(z − G)p (3.3)

in which we have neglected terms of order (z − G)p+1 or higher. From the first condi-

tion (2.6), we have

z′ = − 1

p − 1

(

p−1
∑

α=1

1

ap+1
α

)

(z′ − G′(z′)) (3.4)
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where z′ = z + 1
p−1

∑ 1
aα

and G′(z′) = G(z) + 1
p−1

∑ 1
ap+1

α
. The Green function has a

singularity proportional to z′1/p; thus the density of state ρ(λ) = − 1
π ImG(λ) has an edge

singularity characterized by an exponent 1
p .

Note that the conditions (2.6) for the aα admit several solutions. However, all these dif-

ferent choices lead to the same singular behavior. In other words, the singularity exponent

is independent of the location of the critical points zc = − 1
p−1

∑ 1
aα

.

For instance, in the case p = 3, the (complex)solutions are

(a1, a2) = ±(1,−1)

and

(a1, a2) = ±
(

√
3

2
√

2
+

1

2
√

2
i,

√
3

2
√

2
− 1

2
√

2
i

)

.

The dual higher Airy matrix model in (1.1) is obtained from expectation values of

characteristic polynomials [5, 6], leading to

<

p−1
∏

α=1

det(aα − iB)
N

p−1 >=< exp

[

p−1
∑

α=1

trlog

(

1 − iB

aα

)

+ N
∑

log

(

p−1
∏

α=1

aα

)]

> (3.5)

Expanding the logarithm, with the conditions (2.6), we obtain in the large N limit, the

higher Airy matrix model (1.1) as explained in [5, 6] (up to a change of the normalization

factor).

4. Intersection numbers of one marked point for p-spin curves

We now derive the intersection numbers of one marked point from the asymptotic series

expansion of U(s).

(i) p=2. We begin with the simple edge of the semi-circle law. In the large N-limit, in

the range in which s is of order N−1/3, we have

U(s) =
1

Ns
e−

C
4

s3

∫ ∞

−∞

du

2πi
e3Csu2

=
1

Ns

√

π

−3Cs
e−

C
4

s3
(4.1)

where C = −N
3 . By the change of the normalization due to the higher Airy matrix

model of (1.1), we have s̃3/24 = −Ns3/12, and we get

U =
1

Ns

√

π

−3Cs

∞
∑

g=0

s̃g

(24)gg!
(4.2)

Noting that s is a conjugate variable to Λ, this yields a series expansion in inverse

powers of Λ. From the definition (1.3), we obtain the intersection numbers for one

marked point,

< τ3g+1 >g=
1

(24)gg!
. (4.3)

which agrees with our previous result [6] based on the replica method.
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(ii) p=3. The critical point now corresponds to a density of states whose support consists

of two disconnected segments, in the limit in which the gap closes. The intersection

numbers with one marked point for p=3 have been obtained, for arbitrary genus g,

in our previous replica article [6]:

< τ 8g−5−j
3

,j >g=
1

(12)gg!

Γ(g+1
3 )

Γ(2−j
3 )

, (4.4)

where the spin-index is j = 0 for g = 3m + 1 and j = 1 for g = 3m (m=1,2,3,. . . ).

Near the edge point, zc = − 1
p−1

∑ 1
aα

, we find in the scaling region from (2.9)

U(s) =
1

Ns(3Ns)1/3
Ai(ζ) (4.5)

where ζ = −N2/3(4 · 31/3)−1s8/3 which was already established in [6]. From the

standard asymptotic expansion of Airy functions Ai(ζ), we have two distinct series,

U(s) =
1

Ns(3Ns)1/3

[

Ai(0)

(

1 +
1

3!
ζ3 +

1 · 4
6!

ζ6 +
1 · 4 · 7

9!
ζ9 + · · ·

)

+Ai′(0)

(

ζ +
2

4!
ζ4 +

2 · 5
7!

ζ7 +
2 · 5 · 8

10!
ζ10 + · · ·

)]

(4.6)

where Ai(0) = 3−2/3/Γ(2
3 ) and Ai′(0) = −3−1/3/Γ(2

3 ).

The first series in (4.6) gives the intersection numbers for j = 1. From this series ,

noting that s ∼ 1
Λ3 , we have

< τ6,1 >g=3 =
1

(12)33!
· 1

3
, < τ14,1 >g=6=

1

(12)66!
· 4

9
,

< τ22,1 >g=9 =
1

(12)99!
· 1 · 4 · 7

33
, . . . (4.7)

From the second series, we have

< τ1,0 >g=1 =
1

12
, < τ9,0 >g=4 =

1

(12)44!
· 2

3
,

< τ17,0 >g=7 =
1

(12)77!
· 2 · 5

32
, < τ25,0 >g=10 =

1

(12)1010!
· 2 · 5 · 8

33
. (4.8)

These values agree with (4.4) and with the results obtained by completely different

methods [20].

(iii) p = 4. In this case, the critical values of the aα, which satisfy the conditions (2.6),

are obtained as the zeros of a cubic equation,

bα =
1

aα
(α = 1, 2, 3)

(x − b1)(x − b2)(x − b3) = x3 + βx2 + γx + δ = 0 (4.9)

– 6 –
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with

β2 = 9 ± 3
√

6, γ =
1

2
(β2 − 3), δ =

3

2β
(β2 − 1) (4.10)

There is one real solution, and two complex conjugate solutions for the aα. (Although

an analytic expression for the aα , solutions of the cubic equation (4.9) exists , we

give here the numerical values). There are two classes:

(a1, a2, a3) = (±0.52523,±0.41127 ± 0.46403i,±0.41127 ∓ 0.46403i),

(a1, a2, a3) = (±1.0076,∓0.71801 ± 0.33908i,∓0.71801 ∓ 0.33908i) (4.11)

In both cases, the density of state has one critical edge, at which it behaves as

ρ(λ) ∼ λ1/4. Note that , contrary to the critical gap closing p=3 case, for p=4, there

is just one single edge, similar to the p=2 case.

We have

U(s) =
1

Ns
e−

N
3

s(
P 1

aα
)− N

42·15
s5C

∫ ∞

−∞

dv

2π
exp

[

−C

(

s

3
v4 − s3

6
v2

)]

=
1

Ns
e−

N
3

s(
P 1

aα
)− N

42·15
s5C

∫ ∞

0

dy

2π
y−

3
4 e

−y+s5/2
q

NCy
12 (4.12)

where C = N
∑3

α=1
1

a5
α
. In a series expansion in powers of s, we obtain

U(s) =

(

3

4Ns

)(

NCs

3

)− 1
4

e−
Ns
3

P 1
aα · e−

NC
42·15

s5

×
[

Γ

(

1

4

)(

1 +
1

2!
· s5

4

(

NC

12

)

+
s10

4!

(

NC

12

)2 1 · 5
42

+ · · ·
)

+s
5
2

(

NC

12

)
1
2

Γ

(

3

4

)(

1 +
1

3!

3s5

4

(

NC

12

)

+
s10

5!

4 · 7
42

(

NC

12

)2

+ · · ·
)]

. (4.13)

For this p = 4 case, there is the overall factor e−
NC

42·15
s5

. It must also be expanded and

combined with the series to find the relevant terms in the s-expansion. We obtain

then the intersection numbers from this expression, with the scaling s̃5 = NC
12 s5,

< τ1,0 >g=1 =
1

8
, < τ3,2 >g=2 =

9

82 · 5! ,

< τ6,0 >g=3 =
9

83 · 5! , < τ8,2 >g=4 =
7 · 11

85 · 5! · 10 , . . . (4.14)

The results up to order g = 4 had been computed in our replica article [6] and indeed

agree with these new results.

(iv) p ≥ 5. In the case p = 5 , the solutions of the conditions (2.6) fall in three different

classes.

(a) symmetric solution; (a1, a2, a3, a4) = (σ + ρi, σ − ρi,−σ + ρi,−σ − ρ) with

σ = ±0.776887, ρ = ±0.321797.
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(b) aj given by ±(0.624916, -1.01437, 0.53363 +0.473515 i, 0.53363-0.473515 i).

(c) aj given by ±(0.280577 + 0.5117 i, 0.280577-0.5117 i, 0.433665 + 0.158861

i,0.433665 - 0.158861 i).

These three cases all give a closing gap singularity with same same exponent, ρ(λ) ∼
|λ|1/5. We have

U(s) =
1

Ns
e−

N
4

(
P 1

aα
)
∫

du

2π
e
−N(

P 1

a6
α

)[ 1
4
su5+ 5

24
s3u3+ 1

64
s5u]

(4.15)

The intersection numbers may be obtained from this expression in complete analogy

with the p=3 case. The integrand for p = 5 presents five Stokes lines and the

spin-label j = 0, · · · , 4 characterizes the various domains with different asymptotic

expansions. For p > 5 the situation is similar to those described above.

5. Several marked points

Up to now, we have only considered surfaces with one marked point. For higher intersection

numbers we have to look at k-point correlation functions. The Fourier transform of the

k-point function U(s1, . . . , sk) is also known in closed form; it is given by the integral

representation [14].

U(s1, · · · , sk) =
1

n
〈tres1B · · · treskB〉 (5.1)

= (−1)k(k−1)/2e
Pk

1

s2i
2

∮ k
∏

1

dui

2iπ
e

Pk
1(uisi)

k
∏

i=1

n
∏

m=1

(

1+
si

ui−am

)

det
1

ui+si−uj

For the two-point function (k=2), with the same degenerate external source used in (2.4),

one has

U(s1, s2) = e
N
2

(s2
1+s2

2)

∮

du1du2

(2πi)2

p−1
∏

α=1

(

1 − s1

aα − u1

)
N

p−1
(

1 − s2

aα − u2

)
N

p−1

× eN(s1u1+s2u2)

(u1 − u2 + s1)(u1 − u2 − s2)
(5.2)

At the edge singularity, we expand the integrand in powers of 1
aα

, with again the critical

constraints (2.6),

p−1
∏

α=1

(

1 − s

aα − u

)
N

p−1

e
N
2

s2+Nsu

∼ exp

[

− N

p − 1

(

∑ 1

aα

)

s − N

(p2 − 1)

p−1
∑

α=1

(

(u + s)p+1 − up+1

ap+1
α

)]

(5.3)
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By the shift u → u − 1
2s, we obtain

U(s1, s2) =

∫

du1du2

(2πi)2
e
− N

p−1
(
P 1

aα
)s1− N

(p2
−1)

(
Pp−1

α=1
1

a
p+1
α

)((u1+
s1
2

)p+1−(u− s1
2

)p+1)

×e
− N

p−1
(
P 1

aα
)s2− N

(p2
−1)

(
Pp−1

α=1
1

a
p+1
α

)((u2+
s2
2

)p+1−(u2− s2
2

)p+1)

× 1

(u1 − u2 + s1+s2
2 )(u1 − u2 − s1+s2

2 )
. (5.4)

Similarly for the critical k-point correlation function, for an arbitrary value of p, we

have

U(s1, . . . , sk) =
1

(2πi)k

∫ k
∏

i=1

duie
− NC

p2
−1

Pk
i=1[(ui+

si
2

)p+1−(ui− si
2

)p+1]

× e
− N

p−1
(
P 1

aα
)

P

si

det(ui − uj + 1
2(si + sj))

(5.5)

with C =
∑p−1

α=1
1

ap+1
α

. The leading connected part is obtained by the longest cycles (of

length k) in the expansion of the determinant.

We focus now on the case p=3 (for p=2, this integral has been already evaluated and

the intersection numbers for two marked points for arbitrary genus thereby obtained in [5],

(see also [10, 22]).

For the case p=3, we consider the critical values (a1, a2) = (1,−1) for simplicity. The

singularity is located at the origin (the gap closing point). We replace the denominator by

the integral,
∫ ∞

0
dxe−[u1−u2+

1
2
(s1+s2)]x =

1

u1 − u2 + 1
2(s1 + s2)

(5.6)

Then we have

U(s1, s2) = −e
N
4

(s4
1+s4

2)

s1 + s2

∫ ∞

0
dx(e

1
2
(s1+s2)x − e−

1
2
(s1+s2)x)

×
∫ ∞

−∞

dv1

2π
eiNs1v3

1+i(x−N
4

s3
1)v1

∫ ∞

−∞

dv2

2π
eiNs2v3

2−i(x+ N
4

s3
2)v2 (5.7)

which leads to

U(s1, s2) =
1

(s̃1 + s̃2)(3s̃1)1/3(3s̃2)1/3

∫ ∞

0
dysinh

(

1

2
(s̃1 + s̃2)y

)

×Ai

(

y − 1
4 s̃3

1

(3s̃1)1/3

)

Ai

(

− y + 1
4 s̃3

2

(3s̃2)1/3

)

(5.8)

where we have used the scaled variables si = N−1/4s̃i and x = N1/4y. From now on we

shall drop the tilde, but all s’s should read s̃ instead.

Note that this expression is, from its definition, symmetric under the exchange of s1

and s2 although at this stage it looks asymmetrical.
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If we scale y as y → (3s̃1)
1/3y, we obtain a convenient form for expanding in powers

of si,

U(s1, s2) =
1

(s1 + s2)(3s2)1/3

∫ ∞

0
dysinh

(

1

2
(s1 + s2)(3s1)

1/3y

)

Ai

(

y − 1

4 · 31/3
s
8/3
1

)

Ai

(

−
(

s1

s2

)1/3

y − 1

4 · 31/3
s
8/3
2

)

(5.9)

Note that si is conjugate to Λi in a Fourier transform. However, we have defined the dual

external source model with a term Tr(BΛ). The definition (1.1) of the higher Kontsevich-

Airy models involves a different power of Λ, a power 3 for p = 3. Thus the scaling is here

given by

si ∼
1

Λ3
i

(5.10)

Expanding then for large Λi, i.e. small si, the leading term is obtained by replacing the

sinh X by its first coefficient X and dropping the s
8/3
i in the Airy functions. Note that the

corrections involve s8/3 and thus are of relative order 1/Λ8.

The leading term, which is order 1/Λ, is

U(s1, s2) =
1

2

(

s1

s2

)
1
3
∫ ∞

0
dyyAi(y)Ai

(

−
(

s1

s2

)

y

)

=
1

2

(s1s2)
1
3

(

s
1
3
1 + s

1
3
2

)

(s1 + s2)
(−Ai′(0)Ai(0)) (5.11)

where Ai(0) = 3−
2
3

1
Γ( 2

3
)

and Ai′(0) = −3−
1
3

1
Γ( 1

3
)
, and thus −Ai′(0)Ai(0) =

√
3

6π . The

calculation involves the differential equation Ai′′(y) = yAi(y) followed by integrations by

parts.

The next order, which provides the intersection numbers for two marked points at

genus one, involves three terms. The first one is the cubic correction X3/6 to the linear

term of sinhX; the other two involve the Taylor expansion of the s8/3 terms in the Airy

functions.

∆U (1)(s1, s2) =
1

16

s1(s1 + s2)
2

(3s2)
1
3

∫ ∞

0
dyy3Ai(y)Ai

(

−
(

s1

s2

)
1
3

y

)

=
1

4 · 31/3
(s1s2)

4
3 (Ai′(0))2 +

1

8 · 31/3
s1s

2
3
2 (s2 − s1)J (5.12)

where J is

J =

∫ ∞

0
dyAi(y)Ai

(

−
(

s1

s2

)
1
3

y

)

. (5.13)

∆U (2)(s1, s2) = − 1

8 · 31/3

(

s1

s2

)
1
3

s
8
3
1

∫ ∞

0
dyyAi′(y)Ai

(

−
(

s1

s2

)
1
3

y

)

=
1

8 · 31/3

(

s1

s2

)
2
3 s

8
3
1 s2

s1 + s2
(Ai′(0))2 +

1

8 · 31/3

s3
1s

2
3
2

s1 + s2
J (5.14)
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∆U (3)(s1, s2) = − 1

8 · 31/3

(

s1

s2

)
2
3

s
8
3
2

(

s2

s1

)
1
3
∫ ∞

0
dyyAi(y)Ai′

(

−
(

s1

s2

)
1
3

y

)

=
1

8 · 31/3

s
2
3
1 s3

2

s1 + s2

(

s2

s1

)
1
3

(Ai′(0))2 − 1

8 · 31/3

(

s1

s2

)
1
3 s

2
3
1 s3

2

s1 + s2
J (5.15)

The terms which are proportional to the integral J cancel beautifully when one adds

the three correction terms. The addition leads to

∆U(s1, s2) =
1

8 · 31/3
(s1s2)

1
3 (s2

1 + s1s2 + s2
2)(Ai′(0))2 (5.16)

From the scaling to Λ, we have

(s1s2)
1
3 (s2

1 + s1s2 + s2
2) ∼

1

Λ7
1Λ2

+
1

Λ4
1Λ

4
2

+
1

Λ1Λ7
2

. (5.17)

They correspond to t0,0 ∼ 1
Λ , t2,0 ∼ 1

Λ7 and t1,0 ∼ 1
Λ4 , and they give the intersection

numbers for two marked points.

< τ0,0τ2,0 >g=1=< τ2
1,0 >=

1

12
. (5.18)

which agrees with the solution of the Virasoro equation for p = 3 [23, 21]. Note that

here instead of the recursive calculation of these numbers used by previous authors, we

have, with the integral representation (5.9), a generating function for arbitrary genera of

intersection numbers with two marked points.

6. The p → −1 limit

Up to now p, which characterizes the spin-structure, was an integer larger than one. It

is interesting to consider how the theory is modified when it is continued to negative

values of p and in particular when p = −1. Since the generalized Kontsevich model

involves 1
p+1trBp+1, the limit p → −1 gives a logarithmic potential trlogB. This logarithmic

potential corresponds to the Penner model [24, 25] and it is known to be related to the

Euler character χ of the Riemann surfaces.

As we have discussed, the intersection numbers do depend upon p; for instance, in the

case of one marked point, we have [6]

< τ1,0 >g=1=
p − 1

24
. (6.1)

The analytic continuation over p to negative values is thus possible and in this case, it

gives simply < τ1,0 >g=1= − 1
12 in agreement with the result of [24]: χ(Γ1

1) = − 1
12 .

One can indeed consider continuing to negative values many of those formulae. For

instance in our previous work concerning the replica limit, n → 0 for n × n matrix B, we

had found

limitn→0
1

n
< trBl >=

Γ(4l + 1)

4lΓ(2l + 2)
(6.2)
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which is indeed finite, equal to −1/3, in the limit l → −1.

The case of p = −1 is particulary interesting since Witten [4] had pointed out that

in the limit k → −3 in the level-k gauged WZW model, the intersection numbers, defined

by (1.5), become the integral of the top Chern class alone,

Zg = (−1)g
∫

M̄g

cT

= −χ(Mg,j) (6.3)

where χ is the Euler character of the manifold.

If we compare our normalizations to Witten’s correspondence with the level-k gauged

WZW model, our definition of p is related to k by

p = k + 2 (6.4)

and the limit k → −3 indeed corresponds to the p = −1 limit.

7. Discussion

In this article we have shown that the intersection numbers of Riemann surfaces, the moduli

space of surfaces with n marked points, endowed with a p-spin structure, are obtained from

a Gaussian random matrix theory with external source, at an edge point where the asymp-

totic density of eigenvalues exhibits a singular behavior ρ(λ) ∼ λ
1
p . The Fourier transforms

U(s1, . . . , sk) of the k-point correlation functions provide the intersection numbers through

the conjugacy relation si ∼ 1
Λp

i
.

We have found an integral representation for U(s1, . . . , sk) at the critical point. Wit-

ten’s conjecture is that the intersection numbers may be obtained recursively through

Virasoro equations. Our formula is instead a closed expression for arbitary p and arbitrary

genus; it also gives the possibility to continue in p to negative values (for instance p = −1).

It is amusing to observe that the Fourier transform U(s1, . . . , sk) has an expansion as prod-

ucts of powers of si, which corresponds precisely to the expansion in tn,j of the free energy

in the generalized Kontsevich model.

Recently, this p-th generalized Kontsevich model has been discussed as an effective

theory of open strings between Liouville D-branes [26, 27]. The duality, which we have

discussed with external source, corresponds to the relation between closed string (gravity)

and open string (gauge theory) with cosmological constants Λ. The random matrix model

with external source gives thus a theory for the case of D0 branes.

A possible extension of this work would deal with the orthogonal-symplectic Gaussian

matrix models with external source, which are also mutually dual [28 – 30]. This duality

is based on the so-called supersymmetric representation, introduced by Efetov [31] and

developped by several authors [32, 33]. The time dependent case should also be reconsid-

ered [14, 15] at the light of intersection numbers theory. This is all left to further work.
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